
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Enhanced sampling of rare events

Simone Melchionna
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1 EW, United Kingdom

~Received 16 April 2000!

We present a method to enhance sampling of a given reaction coordinate by projecting part of the random
thermal noise along a preferential direction. The approach is promising to study rough energy landscapes and
highly activated barriers that can be overcome by increasing the attempt frequency. Furthermore it allows us to
rescale a given reaction coordinate without biasing the configurational properties of the system. A major
advantage of the method is its simplicity in the analytical derivation and numerical implementation.

PACS number~s!: 02.70.2c, 05.20.Gg, 05.70.Ce
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I. INTRODUCTION

Condensed matter in the quantum and classical regi
often undergoes transitions between stable states sepa
by free-energy barriers of low dimensionality and wi
heights of orderkT or larger. Computer simulation is a pow
erful tool to study microscopic phenomena but in its simpl
form is limited to small systems for rather short time wi
dows. When dealing with rare events, the current comp
tional limits do not allow for spanning for sufficiently lon
times many reactions of interest. The situation is worse
when a detailed knowledge of the reaction path is not kno
in advance. The limited ergodic attitude and the unkno
preferential states are major hindrances for a detailed un
standing of the phase-space landscape of a given system

In past years, different strategies have been devise
order to enhance sampling of rare events and obtain accu
calculations of free-energy and/or rate constants. Th
methods can be grouped into two different classes. In
class the initial knowledge of the reaction coordinate~RC!
and location of the relevant free energy minima allows
use of simulation techniques such as Monte Carlo or mole
lar dynamics. The methods rely on either introducing a bi
ing potential dependent on a preset value of a given RC
with the umbrella sampling method@1#, or on constraining
the reaction coordinate, as with the blue moon ensem
method@2,3#. More often a suitable weighting procedure
not known a priori and must be constructed by trial an
error. This is the first drawback of this approach. A ve
interesting technique has been recently introduced by B
huiset al. @4# that enables us to find the optimal reaction pa
once the location of the relevant free-energy minima
known, via a path integral approach.

Combining these approaches, once a good weighting
cedure has been found, a stepwise walk along the reac
path can be performed for a defined set of values of the
and with a limited number of possible reaction channe
Consequently, sampling the reaction path can be comp
tionally very expensive due to the large number of points
be sampled in the multidimensional phase space. In the
of umbrella sampling applied to highly activated process
the computation can be even more difficult due to the st
biasing potential needed to achieve a good local samplin
the RC.

These approaches, although they bias the natural sta
PRE 621063-651X/2000/62~6!/8762~6!/$15.00
es
ted

t

a-

d
n
n
er-
.
in
ate
se
e

e
u-
-

as

le

l-

s

o-
on
C,
.

ta-
o
se

s,
p
of

ti-

cal distribution, can be rigorously inverted to compute fr
energies with high accuracy. Furthermore, by using mole
lar dynamics, the rate constant associated with the pro
can be computed as an average over initial states belon
to the biased distribution@2,5#.

The second class of strategies includes a plethora of
ferent techniques that enables us to explore the free-en
landscape and eventually locate the relevant minima, find
application both in optimization problems and in enhanc
the sampling rate of complex systems. Among others, s
eral techniques, such as multicanonical sampling@6#,
J-walking @7# andS-walking @8# schemes, and hyperdynam
ics @9#, overcome energetic or entropic barriers in spec
cases~see for example, Chaps. 6 and 7 in@10# and references
therein!. These approaches are usually based on altering
ther the potential function or the thermodynamic state of
system, typically by raising the temperature, to span rou
energy landscapes. Most of these techniques are usually
plied via Monte Carlo and its variants, by relying on a s
tistical, rather than dynamical, sampling.

In this paper, we describe a method that enhances
sampling of a complex phase space, while preserving
configurational distribution of the system. To this aim
Hamiltonian equations of motion will be used and the flu
tuations of the RC will be enhanced by a kinetic mechanis
produced by rescaling the generalized mass associated
the RC. The underlying idea of the present approach is
work in Cartesian coordinates and project part of the rand
thermal noise available to the system~of ordergkT/2 for a
system composed ofg degrees of freeedom! along one or
more reaction coordinates so as to favor transitions betw
states of high probability separated by high-~free-! energy
barriers. A similar idea was proposed several years ago
Bennett who used the independence from the masses o
configurational properties to accelerate equilibration@11#.

As it will be shown, a detailed knowledge of the reactio
path is not needed in advance, so that the system is
forced to follow a predefined reaction channel but it is p
mitted a certain freedom to find the best path to undergo
unfavorable transitions. Moreover, a knowledge of the re
tion coordinate in itself is not needed, but only of the u
vector directed along the RC gradient.

The method has its potential application in molecular d
namics, where the continuous nature of the evolution eq
tions allows us to study large and flexible molecules a
8762 ©2000 The American Physical Society
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PRE 62 8763ENHANCED SAMPLING OF RARE EVENTS
systems at high density, and in the hybrid Monte Carlo
proach, where the kinetic term of the Hamiltonian is part
the propagation algorithm.

The paper is organized as follows. In Sec. I, the algeb
treatment of the method is outlined. Section II illustrates
numerical example. Section III contains some concluding
marks. Finally, the Appendix illustrates how to couple d
namical equations with a thermostat.

II. PROJECTED HAMILTONIAN

Let us consider a mechanical system defined by the se
6N independent coordinates and momenta$r ,p%. For the
sake of simplicity, we will restrict ourselves to a single r
action coordinate function of positions only,j(r ), so that the
probability of finding the system at positionj* is

P~j5j* !5^d„j~r !2j* …&. ~1!

If the system is described by the HamiltonianH(r ,p)
5( i pi

2/2mi1V(r ), the quadratic velocity associated toj
reads

j̇25Z= :K= , ~2!

where A= :B= indicates the contraction ofA= and B= , A= :B=
5Tr(A= B= ), and the two following symmetric matrices hav
been introduced:

Z= 5Zi j 5
1

Amimj

¹ ij¹ jj, ~3!

K= 5Ki j 5
1

Amimj

pipj . ~4!

The average quadratic velocity is thus found to be

^j̇2&5

E drdpe2b[ p2/2m1V(r )]Z= :K=

E drdpe2b[ p2/2m1V(r )]

5
kT

2

E dre2bV(r )Z= :1=

E dre2bV(r )

5
kT

2
^Tr Z&. ~5!

Our goal is to alter the natural distribution in order
amplify the average quadratic velocity of the RC. Let us n
introduce the projectorP' along the (1/Ami)¹ ij direction
and acting on the 3N-configurational space

P'=5
1

Tr Z
Z
=

~6!

and its parallel counterpart

Pi=51=2P'= . ~7!
-
f

ic
a
-

of

Clearly, any vector with componentsv i5c(1/Ami)¹ ij, with
c being a constant, is an eigenvector ofP'= :

P'= v5c
1

Tr Z

1

Amimj

¹ ij¹ jj
1

Amj

¹ jj5v. ~8!

The projector P'= is not invertible and obeys the rule

Tr P'51, P'
2 5P' , while for its parallel counterpar

Tr Pi53N21, andPi
25Pi .

Let us now introduce the following invertible operator

x
=

5Pi=1aP'=51=1~a21!P'= , ~9!

wherea is a free parameter, withaÞ0.
The following formula applies for a generic function o

the matrixx
=
:

f ~x
=
!5 f ~1!1=1@ f ~a!2 f ~1!#P'= ~10!

as it is seen by expandingf (x
=
) in powers ofx

=
, and observ-

ing thatx
=

m51=1(am21)P'= . Therefore the following equa

tions apply:

x
=

2151=1S 1

a
21D P'= ,

Tr x53N211a,

detx5eTr ln x5eTr ln(a)P'5a. ~11!

By construction, given a generic vector in configuration
space, the operatorx

=
scales its component parallel t

(1/mi)¹ ij by the factora, while the orthogonal component
are untouched by the transformation.

The matrixx
=

is now applied to define the Lagrangian

Lb5
1

2 (
i j

x i jAmiṙ iAmj ṙ j2V~r ! ~12!

containing a position-dependent kinetic term. The associa
momenta arepi5( jx i j Amimj ṙ j and the Hamiltonian is

Hb5
1

2
x
=

21:K= 1V~r !, ~13!

whereK= is defined by Eq.~4!.
The presence of the 1/a scaling term in the Hamiltonian

corresponds to a scaling of the generalized mass assoc
to the variablej. Therefore the projectors will redirect pa
of the thermal noise on the kinetic term associated to the
We notice here thatHb is reminiscent of the Hamiltonian
proposed by Forrest and Suter to enhance the samplin
polymeric chains in the framework of the hybrid Mon
Carlo simulation method@12#.

The standard Lagrangian and Hamiltonian functions
recovered ifa51, sincex

=
51= . On the other hand the Hamil

tonian fora50. that intuitively would correspond to a con
strained RC, is pathological sincex

=
is not invertible any-

more. Thus the Hamiltonian~13! with a50 is singular and
unable to produce a constrained dynamics@13#.
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If we now suppose that the system obeys a canonical
tribution f b(r ,p)}e2bHb, the quadratic velocity associate
to j is

j̇25x
=

21Z= x
=

21:K= , ~14!

so that its average value over the distributionf b(r ,p) reads

^j̇2&b5

E drdpe2bHbx
=

21Z= x
=

21:K=

E drdpe2bHb

5
kT

2

E dre2bV(r )Z= :x
=

21detx1/2

E dre2bV(r )detx1/2

5
kT

2a
^Tr Z&, ~15!

where we have used Eq.~11! and the fact that

Z= :x
=

215Z= :F1=1S 1

a
21D P'= G5

1

a
Tr Z, ~16!

since

Z= :P'=5

(
i

(
j

~¹ ij¹ jj!2/~mimj !

(
k

~¹kj!2/mk

5Tr Z. ~17!

Consequently, we obtain

^j̇2&b5
1

a
^j̇2& ~18!

and in general, by applying a similar calculation to the s
tistical moments of the RC velocity,̂j̇m&b5(1/am/2)^j̇m&.
Therefore if we choose the parametera,1, the effect of the
kinetic bias in the HamiltonianHb is to amplify the fluctua-
tions of the RC velocity by a factor 1/a.

An important consequence of the projected Hamilton
is that the configurational distribution functionf b(r )
5*dp fb(r ,p) is unbiased by the presence of the projecto

f b~r !5

E dpe2bHb

E drdpe2bHb

5
e2bV(r )

E dre2bV(r )

5 f ~r !. ~19!

Hence, for any observable dependent on positions only,

^A~r !&b5^A~r !&. ~20!

This is an extension of the well-known result of statistic
mechanics that configurational averages do not depend
the numerical value of masses, now valid for a generali
mass associated to an RC. Therefore, at variance with o
free-energy sampling methods, one can compute config
tional averages without any reweighting procedure.
s-

-

n

s

l
on
d
er
a-

The previous argument applies as well to the case of
microcanonical ensemble since the configurational distri
tion is computed to be

f b~r !5

E dpd@Hb2E#

E drE dpd@Hb2E#

}detx21/2@E2V~r !# (N22)/2

}@E2V~r !# (N22)/2 ~21!

and thereforef b(r )5 f (r ). However, for applications it is
often desirable to work in the canonical ensemble@14#. In the
Appendix it is shown how the generalized mass resca
method can be implemented in the canonical ensemble
employing the Nose´-Hoover thermostat@15,16#.

III. NUMERICAL ILLUSTRATION

As a simple test case of the proposed method, we im
ment the projector mechanism to the study of a pair
tagged particles indexed 1 and 2, embedded in a soft sp
fluid. The system, treated with periodic boundary conditio
has, for a densityr.0.0248 Å23, a cubic simulation box of
length L527.2 Å and contains 500 atoms of equal ma
The atoms interact via a truncated Lennard-Jones pote
V5( i , j4e@(s/r i j )

122(s/r i j )
6#, where s53.4050 Å, e

50.995 581 KJ/mol, and with cutoff atr c521/6s, where
the potential is shifted to avoid discontinuities. Furthermo
for particles 1 and 2, we introduce a confining potential
the form 4e@$s/(r 122 l )%122$s/(r 122 l )%6# with l 515 Å,
for the reasons that will become clear in the following. T
external temperature is set to 80 K, corresponding to an
erage pressure of 4.660.1 kbar. The coupling time of the
Nosé-Hoover thermostat is set to 0.5 ps.

We choose a reaction coordinate that is a generic func
of the distance between particles 1 and 2,j(r 1 ,r 2)
5j(ur 12u). For this general choice the matricesP'= andx

=

21

take the form

P'=5S A 0

0 0D ,

x
=

215@1=1gP'= #, ~22!

whereg51/a21, andA= is the 636 block matrix

A= 5
1

2 S r̂ 12

r̂ 21
D ~ r̂ 12 r̂ 21!. ~23!

The corresponding equations of motion are

ṙ 15
p1

m
1

g

2m
~ r̂ 12•p12! r̂ 12,

ṙ 25
p2

m
2

g

2m
~ r̂ 12•p12! r̂ 12,

ṙ n5
pn

m
,
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ṗ15F12
g~ r̂ 12•p12!

2mr12
@p122~ r̂ 12•p12! r̂ 12#2zS p12

mPo

M D ,

ṗ25F21
g~ r̂ 12•p12!

2mr12
@p122~ r̂ 12•p12! r̂ 12#2zS p22

mPo

M D ,

ṗn5Fn2zS pn2
mPo

M D ,

ż5
2

t23NkT
F(

i 51

N pi
2

2m
1

g~ r̂ 12•p12!
2

2m

2
Po

2

2M
2

3~N21!kT

2 G ,

ṡ53~N21!sz, ~24!

wheren>3. From the expression ofx
=

21 and the equations

of motion it follows that, if the pair 1-2 diffuses at distanc
larger thanL/2, the biasing term with periodic boundaries
discontinuous and we are unable to accurately control
quality of the integrated trajectory. In the present test,
avoid any possible problem we introduce the confining
tential between particles 1 and 2 mentioned above.

The equations of motion are integrated with a time step
431024 ps for a total of 53106 steps, corresponding to
ns. The propagation procedure, which needs to be prop
addressed in the presence of velocity-dependent forces a
our case, is casted in the form of the velocity Verlet integ
tion algorithm@1# together with an iterative scheme to prop
gate accurately the velocity-dependent forces. The detai
the procedure will be presented elsewhere.

In Fig. 1, we report the time dependence of the dista
between particles 1 and 2, computed from three trajecto
with a50.1, a50.5, anda51.0 ~unperturbed equations o

FIG. 1. The time dependence of the distance between partic
and 2 computed during a time span of 2 ps, fora50.1 ~solid line!,
a50.5 ~dotted line!, and for the unperturbed trajectory~dashed
line!.
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motion!, for a limited time span. The fluctuations are visib
and exhibit faster motion for the RC as the parametera
decreases.

Figure 2 shows the cumulative average of the freque
of encounter of the tagged pair. Given a distance threshol
d54 Å, the encounter is detected whenr 12(t),d and
r 12(t2h).d, where the condition is checked everyh
50.02 pstime interval. To encounter, the two particles ha
to compete with the large entropic barrier given by the av
able volume and with layering of the surrounding fluid. T
data exhibit that the encounter frequency of the unpertur
trajectory converges over a 1.6-ns time span, while fora
50.5 and 0.1 the convergence is reached over a perio
about 1.0 ns. Overall the encounter frequency has increa
by around 100% fora50.5 and around 200% fora50.1
with respect to the unperturbed dynamics.

In Fig. 3, we report the normalized histogram of findin
the pair at distancer, h(r ), and multiplied by the factor
4pr 2V(N21)/N, for comparison with the radial distribu
tion function of the purely repulsive Lennard-Jones flu
The panels correspond to time averages over 0.4, 1.2, an
ns. The data show a slow convergence for the unpertur
trajectory, while for a50.5 and 0.1 the convergence
faster, particularly for the latter value, as seen from aver
ing over the whole trajectory and inside the first coordinat
shell.

IV. CONCLUSIONS

We have presented a method to enhance sampling
given reaction coordinate by applying a rescaling of its g
eralized mass and projecting part of the random ther
noise along a preferential direction. The method makes
of a continuous form of the equations of motion, and the
fore is well-suited for molecular dynamics and hybrid Mon
Carlo schemes.

The approach is promising for the study of rough ene

1 FIG. 2. The cumulative average of the encounter frequencf
defined forr12(t),4 Å. Symbols as in Fig. 1 and 1 Mstep5106

steps50.4 ns.
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8766 PRE 62SIMONE MELCHIONNA
landscapes and highly activated barriers that can be o
come by an enhanced attempt frequency, i.e., by a ‘‘hott
reaction coordinate. Useful applications can be for study
systems at high density: from the investigation of phase tr
sitions, to complex macromolecular systems, as polym
and biomolecules, and finallyab initio systems, where a
speedup of nuclear and/or electronic degrees of freedo
essential. To this aim, further attention needs to be give
investigate the effect of the inertial parametera to obtain
optimal sampling of the unfavorable phase space in spe
cases.

A major advantage of the proposed method is the simp
ity of the formalism and numerical implementation. A num
ber of further extensions can be foreseen. First, the appro
can be extended to rescaling multiple~vectorial! reaction co-
ordinates, allowing the investigation of complex free-ene
landscapes by selecting a set of relevant reaction coordin
Second, an appealing perspective is to combine the proje
Hamiltonian formalism with the multiple time-step formula
tion of molecular dynamics@17#. These subjects are current
under investigation and will be part of a forthcoming artic
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APPENDIX: EQUATIONS OF MOTION VIA THE NOSE ´ -
HOOVER THERMOSTAT

In order to produce a canonical distribution function, t
Nosé-Hoover thermostatting dynamics@15,16# can be used
once it is properly adapted to the projector mechanism. F

FIG. 3. The histogram of occurrence of particles 1 and 2
distancer, h(r ), multiplied by 4pr 2V(N21)/N. The panels cor-
respond to averaging over the first 0.4~upper panel!, 1.2 ~middle
panel!, and the overall trajectory of 2ns ~lower panel!. Symbols
correspond toa50.1 ~circles!, a50.5 ~squares!, the unperturbed
trajectory ~diamonds!, and the radial distribution function of th
purely repulsive Lennard-Jones fluid~triangles!.
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of all, let us write the Hamiltonian equations of motion d
rived from Hb ,

ṙ i5
1

Ami
(

j
~x21! i j

pj

Amj

,

ṗi5Fi2
1

2
¹ i~x

=

21:K= ! ~A1!

so that we introduce the Nose´-Hoover dynamic friction via
the following non-Hamiltonian equations of motion:

ṙ i5
1

Ami
(

j
~x21! i j

pj

Amj

,

ṗi5Fi2
1

2
¹ i~x

=

21:K= !2zS pi2
mi P0

M D ,

ż5
2

t23NkT
S 1

2
x
=

21:K= 2
P0

2

2M
2

3~N21!kT

2 D ,

ṡ53~N21!sz, ~A2!

where P05( i pi is the total momentum,M5( imi is the
total mass,z and s are auxiliary dynamical variables tha
thermalize the system to the temperatureT, and finally,t is a
coupling time regulating the thermostat efficiency.

The set of equations~A2! conserves total momentum
the RC and the potential are invariant by translation. In fa
in this case( iFi5( i¹ ij5( i¹ i(x=

21:K= )50 and a truly

canonical distribution is produced, as discussed in@18#.
We notice that in the equations of motion~A2!, the terms
derived from the HamiltonianHb do not introduce any
metric factor in the distribution function in the sense
Tuckermanet al. @19#.

The conserved quantities derived from the equations
motion ~A2! are

Hc5Hb1
t23NkT

2
z21kT ln s5const,

P05const ~A3!

and the associated distribution function is

f b~r ,p,z!}E dsd~Hc2const!)
n

d~P0n2const!

5E dsd~Hb1tT
23NkT0z2/21kT0ln s2const!

3)
n

d~P0n2const!

}exp@2b0~Hb1tT
23NkT0z2/2!#

3)
n

d~P0n2const!. ~A4!

We note here that the Nose´-Hoover thermostat achieves the
malization in agreement with the equipartition theorem t
takes the form

1

2 K (
i

pi

]Hb

]pi
L

b

5
1

2
^x
=

21:K= &b5
3NkT

2
. ~A5!

t
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