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Enhanced sampling of rare events
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We present a method to enhance sampling of a given reaction coordinate by projecting part of the random
thermal noise along a preferential direction. The approach is promising to study rough energy landscapes and
highly activated barriers that can be overcome by increasing the attempt frequency. Furthermore it allows us to
rescale a given reaction coordinate without biasing the configurational properties of the system. A major
advantage of the method is its simplicity in the analytical derivation and numerical implementation.

PACS numbgs): 02.70—c, 05.20.Gg, 05.70.Ce

[. INTRODUCTION cal distribution, can be rigorously inverted to compute free
energies with high accuracy. Furthermore, by using molecu-
Condensed matter in the quantum and classical regimdar dynamics, the rate constant associated with the process
often undergoes transitions between stable states separatah be computed as an average over initial states belonging
by free-energy barriers of low dimensionality and with to the biased distributiof2,5].
heights of ordekT or larger. Computer simulation is a pow-  The second class of strategies includes a plethora of dif-
erful tool to study microscopic phenomena but in its simplesferent techniques that enables us to explore the free-energy
form is limited to small systems for rather short time win- landscape and eventually locate the relevant minima, finding
dows. When dealing with rare events, the current computaapplication both in optimization problems and in enhancing
tional limits do not allow for spanning for sufficiently long the sampling rate of complex systems. Among others, sev-
times many reactions of interest. The situation is worseneéral techniques, such as multicanonical samplifg],
when a detailed knowledge of the reaction path is not knowr-walking [ 7] and Swalking [8] schemes, and hyperdynam-
in advance. The limited ergodic attitude and the unknowrics [9], overcome energetic or entropic barriers in specific
preferential states are major hindrances for a detailed undecasegsee for example, Chaps. 6 and 710] and references
standing of the phase-space landscape of a given system. therein. These approaches are usually based on altering ei-
In past years, different strategies have been devised ither the potential function or the thermodynamic state of the
order to enhance sampling of rare events and obtain accurasgstem, typically by raising the temperature, to span rough
calculations of free-energy and/or rate constants. Thesenergy landscapes. Most of these techniques are usually ap-
methods can be grouped into two different classes. In onplied via Monte Carlo and its variants, by relying on a sta-
class the initial knowledge of the reaction coordiné®C) tistical, rather than dynamical, sampling.
and location of the relevant free energy minima allows the In this paper, we describe a method that enhances the
use of simulation techniques such as Monte Carlo or molecusampling of a complex phase space, while preserving the
lar dynamics. The methods rely on either introducing a biaseonfigurational distribution of the system. To this aim,
ing potential dependent on a preset value of a given RC, aldamiltonian equations of motion will be used and the fluc-
with the umbrella sampling methdd], or on constraining tuations of the RC will be enhanced by a kinetic mechanism,
the reaction coordinate, as with the blue moon ensemblproduced by rescaling the generalized mass associated with
method[2,3]. More often a suitable weighting procedure is the RC. The underlying idea of the present approach is to
not known a priori and must be constructed by trial and work in Cartesian coordinates and project part of the random
error. This is the first drawback of this approach. A verythermal noise available to the systdof ordergkT/2 for a
interesting technique has been recently introduced by Bolsystem composed af degrees of freeedomalong one or
huiset al.[4] that enables us to find the optimal reaction pathmore reaction coordinates so as to favor transitions between
once the location of the relevant free-energy minima isstates of high probability separated by hidlee-) energy
known, via a path integral approach. barriers. A similar idea was proposed several years ago by
Combining these approaches, once a good weighting prd®ennett who used the independence from the masses of the
cedure has been found, a stepwise walk along the reacticonfigurational properties to accelerate equilibrafibh.
path can be performed for a defined set of values of the RC, As it will be shown, a detailed knowledge of the reaction
and with a limited number of possible reaction channelspath is not needed in advance, so that the system is not
Consequently, sampling the reaction path can be computderced to follow a predefined reaction channel but it is per-
tionally very expensive due to the large number of points tamitted a certain freedom to find the best path to undergo the
be sampled in the multidimensional phase space. In the casmfavorable transitions. Moreover, a knowledge of the reac-
of umbrella sampling applied to highly activated processestion coordinate in itself is not needed, but only of the unit
the computation can be even more difficult due to the steepector directed along the RC gradient.
biasing potential needed to achieve a good local sampling of The method has its potential application in molecular dy-
the RC. namics, where the continuous nature of the evolution equa-
These approaches, although they bias the natural statistions allows us to study large and flexible molecules and
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systems at high density, and in the hybrid Monte Carlo apClearly, any vector with componengs=c(1/y/m;) V&, with
proach, where the kinetic term of the Hamiltonian is part ofc being a constant, is an e|genvectorqu
the propagation algorithm.

The paper is organized as follows. In Sec. |, the algebraic 1
treatment of the method is outlined. Section Il illustrates a Piv= CTrZ \/—V i&Vj f\/— jE=v. ()
numerical example. Section Ill contains some concluding re-
marks. Finally, the Appendix illustrates how to couple dy-

) k ) The projector P, is not invertible and obeys the rules
namical equations with a thermostat. prol 2 Y

Tr P, =1, P’=pP,, whlle for its parallel counterpart
Tr Pj=3N-1, andPH
Let us now introduce the following invertible operator

x=Pj+aP, =1+(a—-1)P,, (9)

Il. PROJECTED HAMILTONIAN

Let us consider a mechanical system defined by the set of
6N independent coordinates and momefitap}. For the
sake of simplicity, we will restrict ourselves to a single re-
action coordinate function of positions onl(r), so that the
probability of finding the system at positigft is

P(&=&*)=(5(&(r)—&*)). .Y

wherea is a free parameter, withk#0.
The following formula applies for a generic function of
the matrixy:

FO)=Ff(1)1+[f(a)=f(1)]P, (10)
If the system is described by the Hamiltoniah(r,p) - . .

—3,p¥2m+V(r), the quadratic velocity associated go 25 't 1S Seen by expandirig x) in powers ofy, and observ-
reads ing that)(m— 1+ (am— 1)PL Therefore the following equa-
tions apply

£=2K, (2)

N
||%

1
x1:;+(——1>PL,
where A:B indicates the contraction oA and B, A:B = B a

—Tr(AB) and the two following symmetric matrices have

been introduced: Tr x=3N-1+g,

L detX:eTr In X:eTr In(a)P, — a. (11)
Z:Z”:,/mimjvigng’ ©® By construction, given a generic vector in configurational
space, the operatoy scales its component parallel to
1 (1/m,) V¢ by the factora, while the orthogonal components
K=Kij= Pip; - (4)  are untouched by the transformation.
\/mimj

The matrixy is now applied to define the Lagrangian

I-b 22 le\/alrl\/—j j V(I’) (12)

The average quadratic velocity is thus found to be

jdrdpe*ﬁ[pz’zm*v(')]Z:K

<§2)= containing a position-dependent kinetic term. The associated
J drdpe AlP?2m+V(n)] momenta argd; = =, x;;mm;r; and the Hamiltonian is
Hp L tkav 13
kT f dre AV0z:1 KT =g X KAV, (13
= —(Tr2). (5 ] '
f dre—AV() 2 whereK is defined by Eq(4).
The presence of the d/scaling term in the Hamiltonian

corresponds to a scaling of the generalized mass associated
Our goal is to alter the natural distribution in order to to the variable¢. Therefore the projectors will redirect part
amplify the average quadratic velocity of the RC. Let us nowof the thermal noise on the kinetic term associated to the RC.
introduce the projectoP, along the (1{/m;)V,& direction ~ We notice here thaH,, is reminiscent of the Hamiltonian

and acting on the 8-configurational space proposed by Forrest and Suter to enhance the sampling of
polymeric chains in the framework of the hybrid Monte
1 Carlo simulation methofl12].
ii: ﬁz ©®) The standard Lagrangian and Hamiltonian functions are
recovered ife=1, sincey=1. On the other hand the Hamil-
and its parallel counterpart tonian fora=0. that intuitively would correspond to a con-

strained RC, is pathological since is not invertible any-

more. Thus the Hamiltonia(iL3) with @=0 is singular and
unable to produce a constrained dynanjit3].

Pj=1-P.. ™)
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If we now suppose that the system obeys a canonical dis- The previous argument applies as well to the case of the
tribution f,(r,p)<e #Hb, the quadratic velocity associated microcanonical ensemble since the configurational distribu-

toéis
E=x"Zx kK, (14)

so that its average value over the distributfgir,p) reads

Jdrdpe‘BHbX‘lg)(‘l:lg

Jdrdpe‘ﬁHb

<.§2>b:

T f dre”AV(0Z: yldety!?

2 f dre AV(Ndety/?

kT
=Z(Tr Z), (15

where we have used E¢l1) and the fact that

Zx =71+ ! 1)P —1T z 16
A e e L L
since
2 2 (Vigv) (mimy)
Z:P = “Trz. (17
N 2 (Vid)?my

Consequently, we obtain

: 1.

(£)p=—(&%) (18)

and in general, by applying a similar calculation to the sta

tistical moments of the RC velocity &™), = (1/a™?)(£M).

Therefore if we choose the parameter 1, the effect of the
kinetic bias in the Hamiltoniai,, is to amplify the fluctua-

tions of the RC velocity by a factor &/

An important consequence of the projected Hamiltonian

is that the configurational distribution functioriy(r)

= [dpfu(r,p) is unbiased by the presence of the projectors

f dpe_BHb e BV

fdrdpe*'g“b fdrefﬂv(r)

fo(r)= =f(r). (19

Hence, for any observable dependent on positions only,

tion is computed to be
| apatr,—e)

ferdpﬁ[Hb—E]

cdety V{E-V(r)]N""2
“[E-V(r)|N"272 (21

fp(r)=

and thereforef,(r)="f(r). However, for applications it is
often desirable to work in the canonical ensemiig. In the
Appendix it is shown how the generalized mass rescaling
method can be implemented in the canonical ensemble by
employing the Nos¢loover thermostaftl5,16].

IIl. NUMERICAL ILLUSTRATION

As a simple test case of the proposed method, we imple-
ment the projector mechanism to the study of a pair of
tagged particles indexed 1 and 2, embedded in a soft sphere
fluid. The system, treated with periodic boundary conditions,
has, for a densityp=0.0248 A 3, a cubic simulation box of
length L=27.2 A and contains 500 atoms of equal mass.
The atoms interact via a truncated Lennard-Jones potential
V=3_4€[(olr})**=(alr;;)®], where ¢=3.4050 A, €
=0.995581 KJ/mol, and with cutoff at,=2Y%¢, where
the potential is shifted to avoid discontinuities. Furthermore,
for particles 1 and 2, we introduce a confining potential of
the form 4e[{a/(r1,—1)}*2—{o/(r1,—1)}°] with =15 A,
for the reasons that will become clear in the following. The
external temperature is set to 80 K, corresponding to an av-
erage pressure of 460.1 kbar. The coupling time of the
NoseHoover thermostat is set to 0.5 ps.

We choose a reaction coordinate that is a generic function
of the distance between particles 1 and &rq,r,)

=&(|rq5). For this general choice the matricBs and y 1

take the form
A O
P =
= 1o o)

X 1=1149P], (22

wherey=1/a—1, andA is the 6xX6 block matrix

rol . .
Alz) (12 ra1). (23

21

>

1
"2

The corresponding equations of motion are

(A(r))p=(A(r)). (20 r1=%+%(flz'plz)r12a
This is an extension of the well-known result of statistical
mechanics that configurational averages do not depend on ; _P2 l(? AL
the numerical value of masses, now valid for a generalized 2%~ 2m' 1z Plee
mass associated to an RC. Therefore, at variance with other
free-energy sampling methods, one can compute configura- ; _Pn
tional averages without any reweighting procedure. " m’
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FIG. 1. The time dependence of the distance between particles 1 FIG. 2. The cumulative average of the encounter frequéncy
and 2 computed during a time span of 2 ps,der0.1 (solid ling, ~ defined forr12(t)<4 A. Symbols as in Fig. 1 and 1 Mstepi0®

a=0.5 (dotted ling, and for the unperturbed trajectordashed  Steps=0.4 ns.

line).
motion), for a limited time span. The fluctuations are visible
. Y(Flz' P1o) . . mP, and exhibit faster motion for the RC as the parameter
p1=Fi1— Trlz[plz_(rlz' plz)rlﬂ_§( P1— V): decreases.
Figure 2 shows the cumulative average of the frequency

_ y(? Po) mp of encounter of the tagged pair. Given a distance threshold of
Py=Fot 2 (Fyp plz)flﬂ_g( Po— _O) d=4 A, the encounter is detected when,(t)<d and

2mry, M ri,(t—h)>d, where the condition is checked evety

=0.02 pstime interval. To encounter, the two particles have

to compete with the large entropic barrier given by the avail-

able volume and with layering of the surrounding fluid. The

. data exhibit that the encounter frequency of the unperturbed

piz y(rqp p12)2 trajectory converges over a 1.6-ns time span, while dor

“~ 2m 2m =0.5 and 0.1 the convergence is reached over a period of
about 1.0 ns. Overall the encounter frequency has increased
by around 100% fora=0.5 and around 200% fo#=0.1

: with respect to the unperturbed dynamics.

In Fig. 3, we report the normalized histogram of finding
the pair at distance, h(r), and multiplied by the factor
47r2V(N—1)/N, for comparison with the radial distribu-

_ . ] tion function of the purely repulsive Lennard-Jones fluid.
wheren=3. From the expression gf * and the equations The panels correspond to time averages over 0.4, 1.2, and 2.0
of motion it follows that, if the pair 1-2 diffuses at distance ns. The data show a slow convergence for the unperturbed
larger thanL/2, the biasing term with periodic boundaries is trajectory, while for«=0.5 and 0.1 the convergence is
discontinuous and we are unable to accurately control thesster, particularly for the latter value, as seen from averag-

quality of the integrated trajectory. In the present test, tong over the whole trajectory and inside the first coordination
avoid any possible problem we introduce the confining poshell.

tential between particles 1 and 2 mentioned above.
The equations of motion are integrated with a time step of
4Xx10 * ps for a total of & 10° steps, corresponding to 2 IV. CONCLUSIONS
ns. The propagation procedure, which needs to be properly
addressed in the presence of velocity-dependent forces as for We have presented a method to enhance sampling of a
our case, is casted in the form of the velocity Verlet integra-given reaction coordinate by applying a rescaling of its gen-
tion algorithm[1] together with an iterative scheme to propa- eralized mass and projecting part of the random thermal
gate accurately the velocity-dependent forces. The details afoise along a preferential direction. The method makes use
the procedure will be presented elsewhere. of a continuous form of the equations of motion, and there-
In Fig. 1, we report the time dependence of the distancéore is well-suited for molecular dynamics and hybrid Monte
between particles 1 and 2, computed from three trajectorie€arlo schemes.
with «=0.1, «=0.5, anda= 1.0 (unperturbed equations of The approach is promising for the study of rough energy

- mP,
pPn= n_g Pn— M )

2 N

= ZaNkT

P2 3(N-1)kT

2M 2

s=3(N—1)s{, (24
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5t A ‘ ‘ ‘ ] of all, let us write the Hamiltonian equations of motion de-
ol ’fﬁ | 1 rived fromH,,
o & ] o1 p:
! i oy ] r=—=2 (x Yij—=,
tr I NI TN ST et TN mi | \/ﬁ
O o e, e ¥ g 1
5t ] A —-1.
4l ' ] Pi=Fi—5Vilx "K) (A1)
Y so that we introduce the Nogt¢oover dynamic friction via
T j P PR 1 the following non-Hamiltonian equations of motion:
o ‘ ‘ ‘ ) ‘
5 : 1 Pj
4 ri=— > (x Y=,
.| Ty
5l ) 1 1 m;Pg
1] Pi=Fi—5Vilx “K)=¢| pi— =~
0 ‘ ‘ : -
? @ .2 (1 L P} 3(N—1)kT)
= =X Kegor—————,
2 e =
FIG. 3. The histogram of occurrence of particles 1 and 2 at T*3NKT!2 = 2M 2
distancer, h(r), multiplied by 47r2V(N—1)/N. The panels cor- s= 3(N—1)s¢ (A2)

respond to averaging over the first Qupper pang| 1.2 (middle

pane}, and the overall trajectory of s (lower panel. Symbols  \here P,=3,p; is the total momentumM=3;m; is the
correspond tax=0.1 (circles, a=0.5 (squares the unperturbed  5t5] mass ¢ and s are auxiliary dynamical variables that
trajectory (diamondg, and the radial distribution function of the thermalize the system to the temperatlirand finally, 7 is a
purely repulsive Lennard-Jones fifliangles. coupling time regulating the thermostat efficiency.

. . . The set of equation§A2) conserves total momentum if
landscapes and highly activated barriers that can be Ove{ﬁe RC and the potential are invariant by translation. In fact,

come by an enhanced attempt frequency, i.e., by a “hotter’in this caseSF,=3,V,é=>Vi(y :K)=0 and a trul
reaction coordinate. Useful applications can be for studying i e ivitx L ] y
systems at high density: from the investigation of phase tranc@nonical distribution is produced, as discussed[18].
sitions, to complex macromolecular systems, as polymer¥/€ notice that in the equations of moti¢A2), the terms
and biomolecules, and finallgb initio systems, where a derived from the HamiltoniarH, do not introduce any
speedup of nuclear and/or electronic degrees of freedom jgetric factor in the distribution function in the sense of
essential. To this aim, further attention needs to be given td Uckermanet al. [19].

investigate the effect of the inertial parameterto obtain The conserved quantities derived from the equations of
optimal sampling of the unfavorable phase space in specififiotion (A2) are
cases. ' )

H.=H,+ {+KkTIns=const,

A major advantage of the proposed method is the simplic-
ity of the formalism and numerical implementation. A num-
ber of further extensions can be foreseen. First, the approach
can be extended to rescaling multiglectoria) reaction co- and the associated distribution function is
ordinates, allowing the investigation of complex free-energy
landscapes by selecting a set of relevant reaction coordinatefs.(r,p,g)ocj dss(H.—const[] 8(Po,—consi
Second, an appealing perspective is to combine the projecteg v ’
Hamiltonian formalism with the multiple time-step formula-

tion of molecular dynamicgl7]. These subjects are currently — f dss(H,+ 7-$3N KTol2/2+ KT,ln s—cons)
under investigation and will be part of a forthcoming article.

Po=const (A3)
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We note here that the No$¢oover thermostat achieves ther-
malization in agreement with the equipartition theorem that
takes the form

APPENDIX: EQUATIONS OF MOTION VIA THE NOSE -
HOOVER THERMOSTAT

In order to produce a canonical distribution function, the 1 IHy, 1 3NKT
NoseHoover thermostatting dynami¢45,16 can be used 5 2 pi—) ==(x LK)p= . (A5)
i . . . 2 i (9p| 2 = - 2
once it is properly adapted to the projector mechanism. First b
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